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The Validity of Shapiro's Cyclic Inequality 

By B. A. Troesch 

Abstract. A cyclic sum SN(X) = E xi/(xi+1 + Xi+2) is formed with N components 
of a vector x, where in the sum XN+l = xl, XN+2 = X2, and where all denominators 
are positive and all numerators are nonnegative. It is known that there exist vectors x 
for which SN(X) < N/2 if N > 14 and even, and if N > 24. It has been proved that the 
inequality SN (X) > N/2 holds for N < 13. Although it has been conjectured repeatedly 
that the inequality also holds for odd N between 15 and 23, this has apparently never 
been proved. Here we will confirm that the inequality indeed holds for all odd N < 23. 
This settles the question for all N. 

1. Introduction. The problem suggested by H. S. Shapiro in 1954 [12] has 
attracted wide interest; the history of the problem up to 1970 is described vividly 
by D. S. Mitrinovic in his book "Analytic Inequalities" [8, pp. 132ff.]. When the 
problem was published, it appeared very reasonable to conjecture that N/2 is the 
minimum that the cyclic sum SN can attain. It came therefore as a surprise that 
for some N actually SN(x) < N/2 is possible ([5], reporting a result by Lighthill). 
This led to the considerable interest in the problem. 

It has been proved that SN (X) > N/2 for all admissible vectors x, if N < 13 
[14]. On the other hand, there exist vectors x such that SN < N/2, if N > 14 and 
even, and also for all N > 24 ([7] contains a slight misprint). The difference in 
behavior for N even against N odd is explained in [11]. 

In this investigation it will be shown that SN > N/2 for the remaining cases, 
namely 15 < N < 23 and odd. This settles the question of Shapiro's inequality 
for all N. From a result in [1], it follows that only the case N = 23 need to be 
investigated: if the inequality SN(x) > N/2 holds for N = 23, it automatically 
holds for all lower odd N. 

Unfortunately, the only feasible method to show that S23 > 23/2 appears to be 
based on the discussion and some numerical computation of many different cases. 
This approach has been used in [9] for N = 10, in [6] for N = 12, and in [14] for 
N = 13. The largest N where a purely algebraic proof has been successful is N = 8 

[3]. 
It is crucial to consider the cases separately depending on which components 

of x are zero, and which components are different from zero. The reason for this 
is clear: SN is a function of the N variables Xl, x2,... ,XN, where xk > 0. At 

the stationary points of SN we have aSN/O3Xk = 0 when Xk > 0, while at the 

boundary of the admissible domain where xk = 0 the derivative of SN need not 
vanish. Although no two consecutive components of x are permitted to vanish, the 
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number of possibilities nevertheless grows very rapidly with N, and turns out to be 
over 2500 for N = 23. It seems very undesirable to let the computer investigate all 
these cases. 

2. General Description of the Method. The approach, the results, and 
the notation described in [14] will be used. The number and the positions of the 
zero components in the vector x is essential; the string of consecutive nonzero 
components is called a segment. There are three observations that immediately 
reduce the number of cases to be considered down to 100 cases. First, it is shown 
in [14] that there is no loss of generality if the segments are rearranged, for instance 
in order of decreasing segment length. Furthermore, a case with SN < N/2 must 
necessarily contain a segment of length 6 at least ([14, Section 4]). And last, 
segments of length 2 need not be considered, because it can be shown that there is 
always another case that has a lower sum S. 

Let us denote by (c1, c2,... , cl) the case where c1 is the length of the longest 
segment, down to cl, the length of the shortest segment. The list of possibilities 
then starts out with (22), (20,1), (18,3), (18,1,1), (17,4), (16,5), (16,3,1) and ends 
with (6,3,3,4 * 1), (6,3,6 * 1), (6,8 * 1), namely a 6-segment followed by eight 
one-segments. It turns out that many additional cases can be eliminated from 
consideration, if the inequalities to be described below are taken into account, 
together with the restriction on the pivotal ratio u which is easily obtained for 
segments of odd length up to length 9. 

The remaining cases are then investigated by a comprehensive search in a small 
region of a two-parameter plane (see Figure 1). The implementation of the search 
requires only a few lines of programming. 

3. The Properties of a Segment. From the remark above it follows that each 
segment can be analyzed separately, and then segments with the same leading ratio 
u (see below) are concatenated to find the admissible stationary point. According 
to [9], there is at most one of them for each case. 

Let us therefore analyze a segment of length m in more detail. We take as 
example m to be odd to enable us to be specific in the signs, where they alternate. 
Therefore, we set (the zero components are not included in the numbering) 

X = X1 0 X2 X3 * Xm Xm+1 ? Xm+2 

The sum for the m-segment is 
X2 X3 Xm-1 Xm+ Xm+1 

sm = - + -- + +- + _~~+I 
X3 + X4 X4 + X5 Xm + Xm+1 Xm+1 Xm+2 

A choice of new independent variables 

Yl = X2, Y2 = X3 + X4, ... , Ym-1 = Xm + Xm+1 Ym = Xm+1, Ym+l = Xm+2 

is used with success in [9], [6], and [14], and solving for x, 

Xm+2 = Ym+l, Xm+1 = Ym, Xm Ym-1-Ym * *X3 = Y2-Y3+Y4 * *-Ym, X2= Yl 

leads to 
Yi Y2-Y3 *Ym + Y3Y4 +Ym 
Y2 Y3 Y4 

+ Ym-2-Ym-1 + Ym + Ym-l-Ym + Ym 

Ymn-1 Ym Yim+1 
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or 

Sm = C2 +C3 + +Cm +Cm+l1 

which defines the ratios c. 
As in [14, Section 3], we set rk = Yk/Yk+l, so that c2 = rl, cm+1 = rm, Y3C3- 

Y2 = -Y4C4, and quite generally, YkCk - Yk-1 = -Yk+lCk+l k = 3,4,... ,m. In 
terms of the rk's this can be written as 

(3.1) Ck+1 = rk(rk-1 - Ck), k = 3,4,... , m. 

For a stationary Sm, namely aSm/9Yk = 0 for k = 2,3, ... , m + 1, we obtain 

Yi + Y2 = Y1 
Y2~~~~~~~~ 

Y2 Y3 
Y2 + O Y4 +Y5 _ Ym-i Ym + Y3 = 

Y3 Y3 Y3 Y3 Y3 Y4 
+ Y3 + 0 _ Y5 + Ym-1 Ym + Y4 

Y3 Y4 Y4 Y4 Y4 I5 
Y5 + Y5 -4 + Ym-i Ym + Y5 = 

Y3 Y4 I5 I/5 5 A6 

+Ym-i _ Ym-i + Ym-I/i Ym + Ym- O 
Y3 Y4 Y5 Ym-i Ym 

Ym + Ym Ym _ Ym-i + Y 

Y3 Y4 Y5 Ym Ym+l 
_Ym +Ym+1 

Ym+i Ym+2 

The first and last equation give ri = r2, rm-= rm+1, and adding all equations 
gives u = r2 = rm = rm+?, where rm+l is the leading element of the next segment. 
This shows, as mentioned in [14, Section 2], that at the stationary point all segments 
have the same pivotal element u, a fact which is very helpful in the investigation. 
With the notation above, the remaining equations become 

-C3 -1 + r3 = 0, 

-- c4- 1 + r4 = 0, 
r3 

-- +--C5-1 + r5 = 0, 
(3.2) r3r4 r4 

+ + ..+ cm- -i1 + rm-1 = 
r3r4 * rm-2 r4r5 * rm-2 rm-2 

1 1 1 
+ 1 

,+ c cm-1 + rm = 0. 
r3r4 *rm 1 r4r5 ... rm-1 rm-1 

Next, we leave the first equation as is, add the first equation to the second equation 
multiplied by r3, add the second equation to the third equation multiplied by r4, 
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and so on: 

C3 = r3-1 

C3 = r3(r4-C4), 

C4 = r4(r5 - c5), 

or in general, 

(3-3) Ck-1 = rk-l(rk-Ck), k = 4, ...,m. 

By returning to Eq. (3.1) it is easy to show as follows that the Ck's are sym- 
metrical within a segment. Since rm_l = r3, rm-2 = r4,... (see [14, Section 3]) 
and cm+1 = u, the last equation in (3.1), namely cm+1 = rm(rm, - cm), becomes 
1 = r3- cm, and hence, Cm = c3 from Eqs. (3.3). Next, again from Eq. (3.1), 
cm = rm-1(rm2 - Cm-1) or c3 = r3(r4 - Cm1) shows that cm-l = c4, and so on. 
This reduces the number of independent variables by nearly a factor of two. 

The equations can now be solved recursively by assuming values for u and r3, 
using Eqs. (3.3) and (3.1) in turn: 

C3 = r3 -1, 

C4 = r3(u - C3), 

r4 = C4 + -X 
r3 

c5 = r4(r3 - C4), 

C4 
r5 = C5+ -, 

and so on. The symmetry in c requires that for m odd the condition 

(3.4a) C(m+l)/2 = C(m+5)/2i 

and for m even, 

(3.4b) C(m+2)/2 =,C(m+4)/2X 

must hold. For a fixed r3, the values for u are changed to find the values for which 
this last condition is satisfied. Varying r3 leads to curves in the r3 - u plane that 
have stationary values for Sm and are candidates for stationary values for the cyclic 
sum SN 

There are two fortunate circumstances: the recursion formulas are identical for 
segments of any length, and the search can be restricted to a rather small region, 
as shown in Figure 1. To show this, we establish several bounds. 

4. Some Inequalities. The following inequalities are all based on the fact that 
the c's and the r's must be positive. 

a. Since C3 = r3 - 1, it follows that 

(4.1) r3 > 1. 

b. Next, 
Y2-Y3 + Ym 

C3 = 
Y3 
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can also be written as 
1 y6c6 

C3 = U -1 +--6C 
r3 Y3 

and hence 

(4-2) u + - - Y66 = 0, 
r3 Y3 

or 

(4.3) u > r3- 
r3 

c. Similarly, C4 can be written from its definition in two ways: 

C4 = r3 - 1 + y6c6 =r3 - 1 + - - - 

Y4 r4 Y4 

On the other hand, it follows from the second Eq. (3.2) that 

(4.4) C4 r4 + 
r3 

and therefore 
r3+--r4--=Y7C7> r3 + - ---- > 0, 

r4 r3 y4 

(r3 - r4) (1 + > 0, 

and -finally 

(4.5) r4 < r3. 

d. A useful inequality is obtained by the other representation for C4 above: 

- r4 - -+ = 
r3 Y4 

dividing it by r3, 

1- 4- Y66 c 0 
r3 r3 y3 

and adding it to Eq. (4.2) gives 

1 r 
(4.6) u = r3--+ 2 

The desired inequality is 

(4.7) u < r3- + 2 r3 r3 

e. Equation (4.6) gives also the result 

1 1 ~~r4 (1\ 1 
u - r4 = r3 - r4 - -+ 2- + - 1+-=I1--1r3 ---r4J. 

r3 r3 r 33\r3 \r3 / 

If, as we will show next, the second factor is negative, then 

(4.8) r4 > u. 

To this end, we write Eq. (3.1) for k = 4 and k = 5: 

=- (r3 - C4), C6 = r5(r4 -C); 



662 B. A. TROESCH 

therefore r4 > c5, or c5/r4 < 1, so that r3 < C4 + 1, and then from Eq. (4.4), 
r3 < r4 + 1/r3, as claimed above. 

f. Furthermore, by similar considerations, one can show that, after some algebra, 

(4.9) r5>1 if r4>1, 

since r5 - 1 = (r4 - 1/r4)(1 - 1/r3) + r4(r3 - r4). 

Therefore, if u > 1, then r3 > 1, r4 > 1, and r5 > 1 follows from Eqs. (4.1) and 
(4.8). This result then eliminates analytically many cases if the longest segment is 
a 9-segment. 

5. The Curves in the r3 - u Plane. The recursion formulas and Eq. (3.4) 
show that an admissible segment of length m is completely determined by r3 and 
u. Of particular interest are the values of 

m 
Pm = II rj, 

j=1 

since from the definition of the rj's in any particular case the product of all p's 
must equal 1 ([14, Section 3]), and the values of 

m+1 
Sm = Z C 

j=2 

The final goal is to show that 

S23 = E Sm > 23/2 

in all cases. 
As mentioned above, the search in the r3 - u plane can be restricted to a small 

region because of the inequalities (4.1), (4.3), and (4.7). Furthermore, segments 
need only be considered if 

(5.1) u < 2.2. 

Otherwise, it follows from Eqs. (4.7), (4.8), and (4.9) that r3 > 2.4, r4 > 2.2, and 
r5 > 1. A simple computation then shows that S7 > 11.8, exceeding the allowed 
limit already. All longer segments have an even larger sum. Similar considerations 
show that u < 1.4 must hold, except in four cases. 

The search for cases with possibly S23 < 23/2 can therefore be restricted to the 
small region shown in Figure 1. The admissible values for an individual segment lie 
on smooth curves; in Figure 1, the curves for the 8-segment and for the 11-segment 
are drawn as examples. Segments up to length 9 have just one curve, as can be 
proved by Descartes's rule of signs, whereas longer segments have one or two curves, 
with the exception of the 19-segment, which has three curves. 

The computation starts with the longest segment in the case being considered. 
To find a point P on the r3 - u curve, the r3 is kept constant and u is changed until 
Eq. (3.4) is satisfied. The search in r3 with fixed u is less desirable because of the 
shape of some curves, like the 11-segment curve. The point P can be ignored, if 
any of the r's or c's turn out to be negative, or if the sum Sm > 23/2. For segments 
which are no longer than length 4, the explicit formulas for Pk and Sk, given in [14], 
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U 

q 45.1) 

2.0 

I.5 - eq.(4.7) 

I.0 e/q. (4.3) 

// 
// 

0.5t 

8 segment 
/ ---- -11 segment 

C10 1.5 2.0 2.5 

FIGURE 1 
Region of admissible solutions, bounded by Eqs. (4.1), (4.3), (4.7), (5.1). 

can be computed simultaneously and added to Sm. Only the points where this sum 
is smaller than 23/2 need to be analyzed further. 

Advantage can also be taken of the fact that for 7- and 9-segments, u > .922, 
and that S5 > 3.0, S7 > 4.0, and Sg > 5.0. 

Among the about twenty cases left with the possibility that S23 < 23/2, most are 
resolved by casual inspection of the numerical results. The cases with the smallest 
sum S23 are listed in Table 1, and all other cases have a larger sum, except for the 
trivial case with all Xk = 1. 

In order to check the results and the numerical approach, several cases between 
N = 14 and N = 22 were computed by the method described above and the same 
programming implementation, and indeed the values for SN < /2 were found, for 
instance, the case (11, 1, 1) led to S16 < 7.989. 

TABLE 1 

Case (20,1) (18,1,1) (16,1,1,1) (14,4 * 1) (12,5 * 1) 

min S23 11.513 11.512 11.513 11.520 11.533 

6. A Remark. Since inf SN < N/2 occurs already for N = 14, it might 
be reasonable to expect that for very large N the ratio SN/N could fall well be- 
low the value 1/2. The result in [10] that SN/N > 0.3307... and in [2] that 
SN/N > 0.461238... for any N were therefore significant. However, in a re- 
markable paper, Drinfeld [4] proved that infN(SN/N) = 0.4945668. Without the 
knowledge of Drinfeld's proof, the same result was obtained in [13], including the 
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formulas identical to those in [4]. But this did not constitute a proof, but rather 
an example of [4], because a definite distribution of the zero-components of x was 
assumed. The assumption appeared reasonable, based on previous experience. It 
would be desirable to prove that for any N this particular distribution of nonzero 
components always gives the lowest sum SN, except of course for the case with all 
components equal to 1. A result of this kind would make the investigation reported 
here essentially trivial. 

It seems astounding that SN/N, which can be made easily as low as 1/2 for any 
N > 3 by choosing all Xk = 1, can never fall below that value by more than about 
1%. 
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