The Validity of Shapiro's Cyclic Inequality

By B. A. Troesch

Abstract

A cyclic sum $S_{N}(\mathbf{x})=\sum x_{i} /\left(x_{i+1}+x_{i+2}\right)$ is formed with N components of a vector \mathbf{x}, where in the sum $x_{N+1}=x_{1}, x_{N+2}=x_{2}$, and where all denominators are positive and all numerators are nonnegative. It is known that there exist vectors \mathbf{x} for which $S_{N}(\mathbf{x})<N / 2$ if $N \geq 14$ and even, and if $N \geq 24$. It has been proved that the inequality $S_{N}(\mathbf{x}) \geq N / 2$ holds for $N \leq 13$. Although it has been conjectured repeatedly that the inequality also holds for odd N between 15 and 23 , this has apparently never been proved. Here we will confirm that the inequality indeed holds for all odd $N \leq 23$. This settles the question for all N.

1. Introduction. The problem suggested by H. S. Shapiro in 1954 [12] has attracted wide interest; the history of the problem up to 1970 is described vividly by D. S. Mitrinović in his book "Analytic Inequalities" [8, pp. 132ff.]. When the problem was published, it appeared very reasonable to conjecture that $N / 2$ is the minimum that the cyclic sum S_{N} can attain. It came therefore as a surprise that for some N actually $S_{N}(\mathbf{x})<N / 2$ is possible ([5], reporting a result by Lighthill). This led to the considerable interest in the problem.

It has been proved that $S_{N}(\mathbf{x}) \geq N / 2$ for all admissible vectors \mathbf{x}, if $N \leq 13$ [14]. On the other hand, there exist vectors \mathbf{x} such that $S_{N}<N / 2$, if $N \geq 14$ and even, and also for all $N \geq 24$ ([7] contains a slight misprint). The difference in behavior for N even against N odd is explained in [11].

In this investigation it will be shown that $S_{N} \geq N / 2$ for the remaining cases, namely $15 \leq N \leq 23$ and odd. This settles the question of Shapiro's inequality for all N. From a result in [1], it follows that only the case $N=23$ need to be investigated: if the inequality $S_{N}(\mathbf{x}) \geq N / 2$ holds for $N=23$, it automatically holds for all lower odd N.

Unfortunately, the only feasible method to show that $S_{23} \geq 23 / 2$ appears to be based on the discussion and some numerical computation of many different cases. This approach has been used in [9] for $N=10$, in [6] for $N=12$, and in [14] for $N=13$. The largest N where a purely algebraic proof has been successful is $N=8$ [3].

It is crucial to consider the cases separately depending on which components of \mathbf{x} are zero, and which components are different from zero. The reason for this is clear: S_{N} is a function of the N variables $x_{1}, x_{2}, \ldots, x_{N}$, where $x_{k} \geq 0$. At the stationary points of S_{N} we have $\partial S_{N} / \partial x_{k}=0$ when $x_{k}>0$, while at the boundary of the admissible domain where $x_{k}=0$ the derivative of S_{N} need not vanish. Although no two consecutive components of \mathbf{x} are permitted to vanish, the

[^0]number of possibilities nevertheless grows very rapidly with N, and turns out to be over 2500 for $N=23$. It seems very undesirable to let the computer investigate all these cases.
2. General Description of the Method. The approach, the results, and the notation described in [14] will be used. The number and the positions of the zero components in the vector \mathbf{x} is essential; the string of consecutive nonzero components is called a segment. There are three observations that immediately reduce the number of cases to be considered down to 100 cases. First, it is shown in [14] that there is no loss of generality if the segments are rearranged, for instance in order of decreasing segment length. Furthermore, a case with $S_{N}<N / 2$ must necessarily contain a segment of length 6 at least ($[14$, Section 4]). And last, segments of length 2 need not be considered, because it can be shown that there is always another case that has a lower sum S.

Let us denote by $\left(c_{1}, c_{2}, \ldots, c_{l}\right)$ the case where c_{1} is the length of the longest segment, down to c_{l}, the length of the shortest segment. The list of possibilities then starts out with $(22),(20,1),(18,3),(18,1,1),(17,4),(16,5),(16,3,1)$ and ends with $(6,3,3,4 * 1),(6,3,6 * 1),(6,8 * 1)$, namely a 6 -segment followed by eight one-segments. It turns out that many additional cases can be eliminated from consideration, if the inequalities to be described below are taken into account, together with the restriction on the pivotal ratio u which is easily obtained for segments of odd length up to length 9 .

The remaining cases are then investigated by a comprehensive search in a small region of a two-parameter plane (see Figure 1). The implementation of the search requires only a few lines of programming.
3. The Properties of a Segment. From the remark above it follows that each segment can be analyzed separately, and then segments with the same leading ratio u (see below) are concatenated to find the admissible stationary point. According to [9], there is at most one of them for each case.

Let us therefore analyze a segment of length m in more detail. We take as example m to be odd to enable us to be specific in the signs, where they alternate. Therefore, we set (the zero components are not included in the numbering)

$$
\mathbf{x}=x_{1} 0 x_{2} x_{3} \cdots x_{m} x_{m+1} 0 x_{m+2} \cdots
$$

The sum for the m-segment is

$$
S_{m}=\frac{x_{2}}{x_{3}+x_{4}}+\frac{x_{3}}{x_{4}+x_{5}}+\cdots+\frac{x_{m-1}}{x_{m}+x_{m+1}}+\frac{x_{m}}{x_{m+1}}+\frac{x_{m+1}}{x_{m+2}}
$$

A choice of new independent variables

$$
y_{1}=x_{2}, y_{2}=x_{3}+x_{4}, \ldots, y_{m-1}=x_{m}+x_{m+1}, y_{m}=x_{m+1}, y_{m+1}=x_{m+2}
$$

is used with success in [9], [6], and [14], and soiving for \mathbf{x},

$$
x_{m+2}=y_{m+1}, x_{m+1}=y_{m}, x_{m}=y_{m-1}-y_{m}, \ldots, x_{3}=y_{2}-y_{3}+y_{4} \cdots-y_{m}, x_{2}=y_{1},
$$ leads to

$$
\begin{aligned}
S_{m}= & \frac{y_{1}}{y_{2}}+\frac{y_{2}-y_{3} \cdots-y_{m}}{y_{3}}+\frac{y_{3}-y_{4} \cdots+y_{m}}{y_{4}} \cdots \\
& +\frac{y_{m-2}-y_{m-1}+y_{m}}{y_{m-1}}+\frac{y_{m-1}-y_{m}}{y_{m}}+\frac{y_{m}}{y_{m+1}}
\end{aligned}
$$

or

$$
S_{m}=c_{2}+c_{3}+\cdots+c_{m}+c_{m+1}
$$

which defines the ratios c.
As in [14, Section 3], we set $r_{k}=y_{k} / y_{k+1}$, so that $c_{2}=r_{1}, c_{m+1}=r_{m}, y_{3} c_{3}-$ $y_{2}=-y_{4} c_{4}$, and quite generally, $y_{k} c_{k}-y_{k-1}=-y_{k+1} c_{k+1}, k=3,4, \ldots, m$. In terms of the r_{k} 's this can be written as

$$
\begin{equation*}
c_{k+1}=r_{k}\left(r_{k-1}-c_{k}\right), \quad k=3,4, \ldots, m \tag{3.1}
\end{equation*}
$$

For a stationary S_{m}, namely $\partial S_{m} / \partial y_{k}=0$ for $k=2,3, \ldots, m+1$, we obtain

$$
\begin{array}{rr}
-\frac{y_{1}}{y_{2}}+\frac{y_{2}}{y_{3}}=0 \\
-\frac{y_{2}}{y_{3}}+0-\frac{y_{4}}{y_{3}}+\frac{y_{5}}{y_{3}} \ldots & -\frac{y_{m-1}}{y_{3}}+\frac{y_{m}}{y_{3}}+\frac{y_{3}}{y_{4}}=0, \\
+\frac{y_{4}}{y_{3}}-\frac{y_{3}}{y_{4}}+0-\frac{y_{5}}{y_{4}} \ldots & +\frac{y_{m-1}}{y_{4}}-\frac{y_{m}}{y_{4}}+\frac{y_{4}}{y_{5}}=0, \\
-\frac{y_{5}}{y_{3}}+\frac{y_{5}}{y_{4}}-\frac{y_{4}}{y_{5}}+0 \ldots & -\frac{y_{m-1}}{y_{5}}+\frac{y_{m}}{y_{5}}+\frac{y_{5}}{y_{6}}=0, \\
+\frac{y_{m-1}}{y_{3}}-\frac{y_{m-1}}{y_{4}}+\frac{y_{m-1}}{y_{5}} \ldots & 0-\frac{y_{m}}{y_{m-1}}+\frac{y_{m-1}}{y_{m}}=0, \\
-\frac{y_{m}}{y_{3}}+\frac{y_{m}}{y_{4}}-\frac{y_{m}}{y_{5}} \ldots & -\frac{y_{m-1}}{y_{m}}+0+\frac{y_{m}}{y_{m+1}}=0 \\
-\frac{y_{m}}{y_{m+1}}+\frac{y_{m+1}}{y_{m+2}}=0
\end{array}
$$

The first and last equation give $r_{1}=r_{2}, r_{m}=r_{m+1}$, and adding all equations gives $u=r_{2}=r_{m}=r_{m+1}$, where r_{m+1} is the leading element of the next segment. This shows, as mentioned in [14, Section 2], that at the stationary point all segments have the same pivotal element u, a fact which is very helpful in the investigation. With the notation above, the remaining equations become

$$
\begin{array}{r}
-c_{3}-1+r_{3}=0, \\
\frac{1}{r_{3}}-c_{4}-1+r_{4}=0, \\
-\frac{1}{r_{3} r_{4}}+\frac{1}{r_{4}}-c_{5}-1+r_{5}=0, \tag{3.2}\\
\cdots \cdots, \\
+\frac{1}{r_{3} r_{4} \cdots r_{m-2}}-\frac{1}{r_{4} r_{5} \cdots r_{m-2}}+\cdots+\frac{1}{r_{m-2}}-c_{m-1}-1+r_{m-1}=0, \\
-\frac{1}{r_{3} r_{4} \cdots r_{m-1}}+\frac{1}{r_{4} r_{5} \cdots r_{m-1}} \cdots+\frac{1}{r_{m-1}}-c_{m}-1+r_{m}=0 .
\end{array}
$$

Next, we leave the first equation as is, add the first equation to the second equation multiplied by r_{3}, add the second equation to the third equation multiplied by r_{4},
and so on:

$$
\begin{aligned}
& c_{3}=r_{3}-1 \\
& c_{3}=r_{3}\left(r_{4}-c_{4}\right), \\
& c_{4}=r_{4}\left(r_{5}-c_{5}\right),
\end{aligned}
$$

or in general,

$$
\begin{equation*}
c_{k-1}=r_{k-1}\left(r_{k}-c_{k}\right), \quad k=4, \ldots, m \tag{3.3}
\end{equation*}
$$

By returning to Eq. (3.1) it is easy to show as follows that the c_{k} 's are symmetrical within a segment. Since $r_{m-1}=r_{3}, r_{m-2}=r_{4}, \ldots$ (see [14, Section 3]) and $c_{m+1}=u$, the last equation in (3.1), namely $c_{m+1}=r_{m}\left(r_{m-1}-c_{m}\right)$, becomes $1=r_{3}-c_{m}$, and hence, $c_{m}=c_{3}$ from Eqs. (3.3). Next, again from Eq. (3.1), $c_{m}=r_{m-1}\left(r_{m-2}-c_{m-1}\right)$ or $c_{3}=r_{3}\left(r_{4}-c_{m-1}\right)$ shows that $c_{m-1}=c_{4}$, and so on. This reduces the number of independent variables by nearly a factor of two.

The equations can now be solved recursively by assuming values for u and r_{3}, using Eqs. (3.3) and (3.1) in turn:

$$
\begin{aligned}
& c_{3}=r_{3}-1, \\
& c_{4}=r_{3}\left(u-c_{3}\right), \\
& r_{4}=c_{4}+\frac{c_{3}}{r_{3}}, \\
& c_{5}=r_{4}\left(r_{3}-c_{4}\right), \\
& r_{5}=c_{5}+\frac{c_{4}}{r_{4}},
\end{aligned}
$$

and so on. The symmetry in c requires that for m odd the condition

$$
\begin{equation*}
c_{(m+1) / 2}=c_{(m+5) / 2} \tag{3.4a}
\end{equation*}
$$

and for m even,

$$
\begin{equation*}
c_{(m+2) / 2}=c_{(m+4) / 2} \tag{3.4b}
\end{equation*}
$$

must hold. For a fixed r_{3}, the values for u are changed to find the values for which this last condition is satisfied. Varying r_{3} leads to curves in the $r_{3}-u$ plane that have stationary values for S_{m} and are candidates for stationary values for the cyclic $\operatorname{sum} S_{N}$.

There are two fortunate circumstances: the recursion formulas are identical for segments of any length, and the search can be restricted to a rather small region, as shown in Figure 1. To show this, we establish several bounds.
4. Some Inequalities. The following inequalities are all based on the fact that the c 's and the r 's must be positive.
a. Since $c_{3}=r_{3}-1$, it follows that

$$
\begin{equation*}
r_{3}>1 \tag{4.1}
\end{equation*}
$$

b. Next,

$$
c_{3}=\frac{y_{2}-y_{3}+\cdots-y_{m}}{y_{3}}
$$

can also be written as

$$
c_{3}=u-1+\frac{1}{r_{3}}-\frac{y_{6} c_{6}}{y_{3}}
$$

and hence

$$
\begin{equation*}
u+\frac{1}{r_{3}}-r_{3}-\frac{y_{6} c_{6}}{y_{3}}=0 \tag{4.2}
\end{equation*}
$$

or

$$
\begin{equation*}
u>r_{3}-\frac{1}{r_{3}} \tag{4.3}
\end{equation*}
$$

c. Similarly, c_{4} can be written from its definition in two ways:

$$
c_{4}=r_{3}-1+\frac{y_{6} c_{6}}{y_{4}}=r_{3}-1+\frac{1}{r_{4}}-\frac{y_{7} c_{7}}{y_{4}}
$$

On the other hand, it follows from the second Eq. (3.2) that

$$
\begin{equation*}
c_{4}=r_{4}+\frac{1}{r_{3}}-1 \tag{4.4}
\end{equation*}
$$

and therefore

$$
\begin{gathered}
r_{3}+\frac{1}{r_{4}}-r_{4}-\frac{1}{r_{3}}=\frac{y_{7} c_{7}}{y_{4}}>0 \\
\left(r_{3}-r_{4}\right)\left(1+\frac{1}{r_{3} r_{4}}\right)>0
\end{gathered}
$$

and finally

$$
\begin{equation*}
r_{4}<r_{3} . \tag{4.5}
\end{equation*}
$$

d. A useful inequality is obtained by the other representation for c_{4} above:

$$
r_{3}-r_{4}-\frac{1}{r_{3}}+\frac{y_{6} c_{6}}{y_{4}}=0
$$

dividing it by r_{3},

$$
1-\frac{r_{4}}{r_{3}}-\frac{1}{r_{3}^{2}}+\frac{y_{6} c_{6}}{y_{3}}=0
$$

and adding it to Eq. (4.2) gives

$$
\begin{equation*}
u=r_{3}-\frac{1}{r_{3}}+\frac{1}{r_{3}^{2}}-\left(1-\frac{r_{4}}{r_{3}}\right) \tag{4.6}
\end{equation*}
$$

The desired inequality is

$$
\begin{equation*}
u<r_{3}-\frac{1}{r_{3}}+\frac{1}{r_{3}^{2}} \tag{4.7}
\end{equation*}
$$

e. Equation (4.6) gives also the result

$$
u-r_{4}=r_{3}-r_{4}-\frac{1}{r_{3}}+\frac{1}{r_{3}^{2}}-1+\frac{r_{4}}{r_{3}}=\left(1-\frac{1}{r_{3}}\right)\left(r_{3}-\frac{1}{r_{3}}-r_{4}\right)
$$

If, as we will show next, the second factor is negative, then

$$
\begin{equation*}
r_{4}>u \tag{4.8}
\end{equation*}
$$

To this end, we write Eq. (3.1) for $k=4$ and $k=5$:

$$
\frac{c_{5}}{r_{4}}=\left(r_{3}-c_{4}\right), \quad c_{6}=r_{5}\left(r_{4}-c_{5}\right)
$$

therefore $r_{4}>c_{5}$, or $c_{5} / r_{4}<1$, so that $r_{3}<c_{4}+1$, and then from Eq. (4.4), $r_{3}<r_{4}+1 / r_{3}$, as claimed above.
f. Furthermore, by similar considerations, one can show that, after some algebra,

$$
\begin{equation*}
r_{5}>1 \quad \text { if } r_{4}>1 \tag{4.9}
\end{equation*}
$$

since $r_{5}-1=\left(r_{4}-1 / r_{4}\right)\left(1-1 / r_{3}\right)+r_{4}\left(r_{3}-r_{4}\right)$.
Therefore, if $u>1$, then $r_{3}>1, r_{4}>1$, and $r_{5}>1$ follows from Eqs. (4.1) and (4.8). This result then eliminates analytically many cases if the longest segment is a 9 -segment.
5. The Curves in the $r_{3}-u$ Plane. The recursion formulas and Eq. (3.4) show that an admissible segment of length m is completely determined by r_{3} and u. Of particular interest are the values of

$$
p_{m}=\prod_{j=1}^{m} r_{j}
$$

since from the definition of the r_{j} 's in any particular case the product of all $p_{k}^{\prime} \mathrm{s}$ must equal 1 ([14, Section 3]), and the values of

$$
S_{m}=\sum_{j=2}^{m+1} c_{j}
$$

The final goal is to show that

$$
S_{23}=\sum S_{m} \geq 23 / 2
$$

in all cases.
As mentioned above, the search in the $r_{3}-u$ plane can be restricted to a small region because of the inequalities (4.1), (4.3), and (4.7). Furthermore, segments need only be considered if

$$
\begin{equation*}
u<2.2 \tag{5.1}
\end{equation*}
$$

Otherwise, it follows from Eqs. (4.7), (4.8), and (4.9) that $r_{3}>2.4, r_{4}>2.2$, and $r_{5}>1$. A simple computation then shows that $S_{7}>11.8$, exceeding the allowed limit already. All longer segments have an even larger sum. Similar considerations show that $u<1.4$ must hold, except in four cases.

The search for cases with possibly $S_{23}<23 / 2$ can therefore be restricted to the small region shown in Figure 1. The admissible values for an individual segment lie on smooth curves; in Figure 1, the curves for the 8 -segment and for the 11 -segment are drawn as examples. Segments up to length 9 have just one curve, as can be proved by Descartes's rule of signs, whereas longer segments have one or two curves, with the exception of the 19 -segment, which has three curves.

The computation starts with the longest segment in the case being considered. To find a point P on the $r_{3}-u$ curve, the r_{3} is kept constant and u is changed until Eq. (3.4) is satisfied. The search in r_{3} with fixed u is less desirable because of the shape of some curves, like the 11 -segment curve. The point P can be ignored, if any of the r 's or c 's turn out to be negative, or if the sum $S_{m} \geq 23 / 2$. For segments which are no longer than length 4 , the explicit formulas for p_{k} and S_{k}, given in [14],

Figure 1
Region of admissible solutions, bounded by Eqs. (4.1), (4.3), (4.7), (5.1).
can be computed simultaneously and added to S_{m}. Only the points where this sum is smaller than 23/2 need to be analyzed further.

Advantage can also be taken of the fact that for 7- and 9-segments, $u \geq .922$, and that $S_{5} \geq 3.0, S_{7} \geq 4.0$, and $S_{9} \geq 5.0$.

Among the about twenty cases left with the possibility that $S_{23}<23 / 2$, most are resolved by casual inspection of the numerical results. The cases with the smallest sum S_{23} are listed in Table 1, and all other cases have a larger sum, except for the trivial case with all $x_{k}=1$.

In order to check the results and the numerical approach, several cases between $N=14$ and $N=22$ were computed by the method described above and the same programming implementation, and indeed the values for $S_{N}<N / 2$ were found, for instance, the case $(11,1,1)$ led to $S_{16}<7.989$.

TABLE 1

Case	$(20,1)$	$(18,1,1)$	$(16,1,1,1)$	$(14,4 * 1)$	$(12,5 * 1)$
$\min S_{23}$	11.513	11.512	11.513	11.520	11.533

6. A Remark. Since $\inf S_{N}<N / 2$ occurs already for $N=14$, it might be reasonable to expect that for very large N the ratio S_{N} / N could fall well below the value $1 / 2$. The result in [10] that $S_{N} / N \geq 0.3307 \ldots$ and in [2] that $S_{N} / N \geq 0.461238 \ldots$ for any N were therefore significant. However, in a remarkable paper, Drinfeld [4] proved that $\inf _{N}\left(S_{N} / N\right)=0.4945668$. Without the knowledge of Drinfeld's proof, the same result was obtained in [13], including the
formulas identical to those in [4]. But this did not constitute a proof, but rather an example of [4], because a definite distribution of the zero-components of \mathbf{x} was assumed. The assumption appeared reasonable, based on previous experience. It would be desirable to prove that for any N this particular distribution of nonzero components always gives the lowest sum S_{N}, except of course for the case with all components equal to 1 . A result of this kind would make the investigation reported here essentially trivial.

It seems astounding that S_{N} / N, which can be made easily as low as $1 / 2$ for any $N \geq 3$ by choosing all $x_{k}=1$, can never fall below that value by more than about 1%.

Department of Mathematics
University of Southern California
Los Angeles, California 90089-1113

1. P. H. Diananda, "On a cyclic sum," Proc. Glasgow Math. Assoc., v. 6, 1963, pp. 11-13.
2. P. H. Diananda, "A cyclic inequality and an extension of it. II," Proc. Edinburgh Math. Soc. (2), v. 13, 1962, pp. 143-152.
3. D. ̇̀. DJOKOVIĆ, "Sur une inégalité," Proc. Glasgow Math. Assoc., v. 6, 1963, pp. 1-10.
4. V. G. Drinfeld, "A cyclic inequality," Math. Notes, v. 9, 1971, pp. 68-71.
5. C. V. Durell, "Query," Math. Gaz., v. 40, 1956, p. 266.
6. E. K. Godunova \& V. I. Levin, "A cyclic sum with 12 terms," Math. Notes, v. 19, 1976, pp. 510-517.
7. J. C. Lagarias, "The van der Waerden conjecture: Two Soviet solutions," Notices Amer. Math. Soc., v. 29, 1982, pp. 130-133.
8. D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, New York, 1970.
9. P. NOVOSAD, "Isoperimetric eigenvalue problems in algebra," Comm. Pure Appl. Math., v. 21, 1968, pp. 401-465.
10. R. A. Rankin, "A cyclic inequality," Proc. Edinburgh Math. Soc. (2), v. 12, 1961, pp. 139-147.
11. J. L. Searcy \& B. A. Troesch, "A cyclic inequality and a related eigenvalue problem," Pacific J. Math., v. 81, 1979, pp. 217-226.
\rightarrow H. S. SHAPIRO, "Problem 4603," Amer. Math. Monthly, v. 61, 1954, p. 571.
12. B. A. Troesch, "The shooting method applied to a cyclic inequality," Math. Comp., v. 34, 1980, pp. 175-184.
13. B. A. Troesch, "On Shapiro's cyclic inequality for $N=13$," Math. Comp., v. 45, 1985, pp. 199-207.

[^0]: Received November 8, 1988.
 1980 Mathematics Subject Classification (1985 Revision). Primary 26D15, 52A40.
 Key words and phrases. Cyclic inequality, cyclic sum, minimization.

